Ch3: Suite / Ch4: Produit scalaire / Ch5: Application de la dérivée / Ch6: Exponentielle

Exercice 1: (6 points) https://www.mathexien.com

Résoudre les équations/inéquations ci-dessous:

1.
$$e^{2x} = 1$$

2.
$$e^{2x} + 2e^x = -1$$

3.
$$e^{3x-2} < \left(\frac{1}{e^{x-3}}\right)^2$$

4.
$$e^{3x} - 3e^x = -2$$

Exercice 2: (4 points)

Soit le triangle isocèle RST rectangle en RSoit A, B et C les milieux respectifs de [RS], [ST] et [RT]

Calculez les produits scalaires ci-dessous:

1.
$$\overrightarrow{RT}.\overrightarrow{BC}$$

2.
$$\overrightarrow{ST}.\overrightarrow{CA}$$

3.
$$\overrightarrow{CS}.\overrightarrow{SA}$$

4.
$$\overrightarrow{SB}$$
. \overrightarrow{CB}

Exercice 3: (4 points)

Zeina a un porte monnaie qui contient initialement 100 DH.

Chaque jour elle dépense $\frac{1}{4}$ de ce qu'il contient et y ajoute le montant contenu initialement, soit $100\,DH$.

Etudiez la variation et la limite du montant contenu dans son porte monnaie.

<u>Aide</u>: Le montant contenu dans son porte monnaie pourra être modélisé par une suite $(u)_n$ et l'on pourra étudier la suite $(v)_n$ définie par $v_n = u_n - 400$

Exercice 4: (6 points)

Soit $f(x) = xe^{-x}$, C_f sa courbe représentative et le point O(0;0)

- 1. Etudiez le nombre d'intersections entre \mathcal{C}_f et l'axe des abscisses.
- 2. Etudiez le nombre d'intersections entre \mathcal{C}_f et les droites passant par le point O

CC BY-NC-SA 4.0