Correction DS02

Limite de suites

Durée de l'épreuve : **01h55**

Exercice 1 (4 points)

Pour chaque question, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul.

1.
$$u_n = n - \frac{1}{n} - 1$$

2.
$$u_n = n^2 - n + 1$$

1.
$$u_n = n - \frac{1}{n} - 1$$
 2. $u_n = n^2 - n + 1$ **3.** $u_n = \frac{1 - 2n + n^2}{3 + n - 2n^2}$ **4.** $u_n = \frac{2^n - 3^n}{3^n - 1}$

4.
$$u_n = \frac{2^n - 3^n}{3^n - 1}$$

1.
$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} n = +\infty$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n} = 0$$
 $\Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} \left(n - \frac{1}{n} - 1 \right) = +\infty$ par somme.

2.
$$u_n = n^2 \left(1 - \frac{1}{n} + \frac{1}{n^2} \right)$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\Rightarrow \lim_{n \to +\infty} \left(1 - \frac{1}{n} + \frac{1}{n^2} \right) = 1 \text{ pa}$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n} = 0$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n^2} = 0$$

$$\Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} \left(1 - \frac{1}{n} + \frac{1}{n^2}\right) = 1 \text{ par somme}$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n^2} = 1 \Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = +\infty$$
par produit

3.
$$u_n = \frac{n^2 \left(1 - \frac{2}{n} + \frac{1}{n^2}\right)}{-2n^2 \left(1 - \frac{1}{2n} - \frac{3}{2n^2}\right)} = -\frac{1}{2} \times \frac{1 - \frac{2}{n} + \frac{1}{n^2}}{1 - \frac{1}{2n} - \frac{3}{2n^2}}$$

$$\lim_{n \to +\infty} \left(1 - \frac{2}{n} + \frac{1}{n^2} \right) = 1 \text{ par somme}$$

$$\lim_{n \to +\infty} \left(1 - \frac{1}{2n} - \frac{3}{2n^2} \right) = 1 \text{ par somme}$$

$$\Rightarrow \lim_{n \to +\infty} \frac{1 - \frac{2}{n} + \frac{1}{n^2}}{1 - \frac{1}{2n} - \frac{3}{2n^2}} = 1 \text{ par quotient}$$

$$\Rightarrow \lim_{n \to +\infty} \frac{1}{n^2 + \frac{1}{n^2}} = 1 \text{ par paraduit}$$

$$\Rightarrow \lim_{n \to +\infty} u_n = -\frac{1}{2} \quad \text{par produit}$$

4.
$$u_n = \frac{-3^n \times \left(1 - \frac{2^n}{3^n}\right)}{3^n \times \left(1 - \frac{1}{3^n}\right)} = (-1) \times \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \left(\frac{1}{3}\right)^n}$$

$$-1 < \frac{2}{3} < 1 \implies \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \implies \lim_{n \to +\infty} \left(1 - \left(\frac{2}{3}\right)^n\right) = 1$$

$$-1 < \frac{1}{3} < 1 \implies \lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0 \implies \lim_{n \to +\infty} \left(1 - \left(\frac{1}{3}\right)^n\right) = 1$$
par somme
$$0 \implies \lim_{n \to +\infty} u_n = -1$$
par quotient et par produit

$$\Rightarrow \lim_{n \to +\infty} u_n = -1$$

Exercice 2 (2 points)

Soit (u_n) la suite définie pour tout entier naturel non nul par $u_n = 1 - \frac{1}{n}$. En utilisant la définition de la limite d'une suite, montrer que (u_n) converge vers 1.

Pour tout entier naturel n non nul et pour tout $\epsilon > 0$, on a :

$$1 - \epsilon < 1 - \frac{1}{n} < 1 + \epsilon \iff -\epsilon < -\frac{1}{n} < \epsilon \iff -\epsilon < \frac{1}{n} < \epsilon \\ n \in \mathbb{N}^* \end{cases} \iff 0 < \frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}$$

On prend $N=E\left(\frac{1}{\epsilon}\right)+1.$ (l'entier suivant la partie entière de l'inverse de ϵ)

On a bien alors:

pour tout
$$\epsilon > 0$$
, pour tout $n \ge N$, $1 - \epsilon < u_n < 1 + \epsilon \iff \lim_{n \to +\infty} u_n = 1$

Exercice 3 (4 points)

Pour chaque question, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul.

1.
$$u_n = \frac{\sin(n)}{n}$$
 2. $u_n = \frac{\cos(n^2) - n^2}{n+1}$ **3.** $u_n = \frac{(-1)^n - 2n + n^2}{3 + n - 2n^2}$ **4.** (Bonus) $u_n = \frac{2^n - (-3)^n}{3^n - 1}$

1. Pour tout entier naturel n non nul:

$$-1 \le sin(n) \le 1 \iff -\frac{1}{n} \le \frac{sin(n)}{n} \le \frac{1}{n} \qquad \text{car } n > 0$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} -\frac{1}{n} = 0$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n} = 0$$

$$-\frac{1}{n} \le u_n \le \frac{1}{n} \quad \forall n \in \mathbb{N}^*$$

$$\Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = 0 \quad \text{d'après le théorème des gendarmes}$$

2. Pour tout entier naturel n:

$$-1 \le \cos(n^2) \le 1 \iff -1 - n^2 \le \cos(n^2) - n^2 \le 1 - n^2$$
$$\iff \frac{-1 - n^2}{n+1} \le \frac{\cos(n^2) - n^2}{n+1} \le \frac{1 - n^2}{n+1} \qquad \text{car } n+1 > 0$$

$$\lim_{n \to +\infty} \frac{1 - n^2}{n + 1} = \lim_{n \to +\infty} (-n) \times \frac{1 - \frac{1}{n^2}}{1 + \frac{1}{n}} = -\infty \text{ par somme, quotient puis produit.}$$

$$u_n \le \frac{1 - n^2}{n + 1} \quad \forall n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \frac{1 - n^2}{n + 1} = -\infty$$

$$\implies \lim_{n \to +\infty} u_n = -\infty \quad \text{par comparaison}$$

3. Pour entier naturel $n \geq 2$:

$$-1 \le (-1)^n \le 1 \iff -1 - 2n + n^2 \le (-1)^n - 2n + n^2 \le 1 - 2n + n^2$$

$$\iff \frac{1-2n+n^2}{3+n-2n^2} \le u_n \le \frac{-1-2n+n^2}{3+n-2n^2} \quad \text{car } 3+n-2n^2 < 0 \quad \forall n \ge 2$$

Soit
$$v_n = \frac{1 - 2n + n^2}{3 + n - 2n^2}$$
 et $w_n = \frac{-1 - 2n + n^2}{3 + n - 2n^2}$.

On a vu dans l'exercice 1, question 3, que $\lim_{n \to +\infty} v_n = -\frac{1}{2}$

On a de la même manière : $\lim_{n \to +\infty} w_n = -\frac{1}{2}$

$$\begin{array}{c} v_n \leq u_n \leq w_n \quad \forall n \geq 2 \\ \lim\limits_{n \to +\infty} v_n = -\frac{1}{2} \\ \lim\limits_{n \to +\infty} w_n = -\frac{1}{2} \end{array} \right\} \implies \lim\limits_{n \to +\infty} u_n = -\frac{1}{2} \quad \text{d'après le théorème des gendarmes}$$

4. Pour tout entier naturel $3^n - 1 > 0$, le signe de u_n est donc celui du numérateur.

Si
$$n$$
 est pair : $2^n - (-3)^n = 2^n - 3^n < 0$
Si n est impair : $2^n - (-3)^n = 2^n + 3^n > 0$

De plus, on a vu dans l'exercice 1, question 4, que :
$$\lim_{n\to+\infty} \frac{2^n-3n}{3^n-1}=-1$$

On peut montrer de la même manière que :
$$\lim_{n\to+\infty} \frac{2^n+3n}{3^n-1}=1$$

Si la suite avait une limite, elle serait unique que l'on considère les termes paires ou les termes impairs, on a donc une contradiction, ce qui nous permet de conclure que la suite n'a pas de limite.

Exercice 4 (10 points)

Cet exercice est constitué de quatre questions correspondant à des approches différentes pour étudier la suite définie pour tout entier naturel n par $u_0 = 1$ et :

$$u_{n+1} = 1 + \frac{1}{2}u_n$$

1. a. Montrer, par récurrence, que pour tout entier naturel n, $u_n = 2 - \left(\frac{1}{2}\right)^n$.

Soit la propriété
$$P_n: u_n = 2 - \left(\frac{1}{2}\right)^n$$

• Initialisation :

Avec
$$n=0$$
: $u_0=1$ d'après l'énoncé et $2-\left(\frac{1}{2}\right)^0=2-1=1$

Donc P_0 est vraie et la propriété est initialisée au rang n=0.

 \circ *Hérédité* :

On suppose P_k vraie, on a donc $u_k = 2 - \left(\frac{1}{2}\right)^k$.

On essaie de montrer que P_{k+1} est vraie, c'est à dire que : $u_{k+1} = 2 - \left(\frac{1}{2}\right)^{k+1}$.

$$u_{k+1} = 1 + \frac{1}{2}u_k$$

$$= 1 + \frac{1}{2}\left(2 - \left(\frac{1}{2}\right)^k\right)$$
 (en utilisant l'hypothèse de récurrence)
$$= 1 + 1 - \left(\frac{1}{2}\right)^{k+1}$$

$$= 2 - \left(\frac{1}{2}\right)^{k+1}$$

Donc P_{k+1} est vraie et la propriété est héréditaire

\circ Conclusion:

La propriété est initialisée au rang n=0 et est héréditaire donc, par le principe de récurrence, on a bien pour tout entier naturel $n: u_n=2-\left(\frac{1}{2}\right)^n$

b. Que peut-on en déduire sur la limite éventuelle de la suite (u_n) ?

$$-1 < \frac{1}{2} < 1 \ \Rightarrow \ \lim_{n \to +\infty} \ \left(\frac{1}{2}\right)^n = 0 \ \Rightarrow \ \lim_{n \to +\infty} \ \left(2 - \left(\frac{1}{2}\right)^n\right) = 2 \ \text{par produit et par somme}$$

2. a. Montrer que la suite définie pour tout entier naturel n par $a_n = u_n - 2$ est géométrique.

$$a_{n+1} = u_{n+1} - 2$$

$$= 1 + \frac{1}{2}u_n - 2 = \frac{1}{2}u_n - 1$$

$$= \frac{1}{2}(u_n - 2)$$

$$= \frac{1}{2}a_n$$

Donc a_n est une suite déométrique de raison $q = \frac{1}{2}$ et de premier terme $a_0 = u_0 - 2 = -1$

b. En déduire une expression explicite de la suite (a_n) et de la suite (u_n) .

D'après 2.a. :
$$a_n = -\left(\frac{1}{2}\right)^n$$
 pour tout entier naturel n .
Et $u_n = a_n + 2 = 2 - \left(\frac{1}{2}\right)^n$ pour tout entier naturel n .

c. Que peut-on en déduire sur la limite éventuelle de la suite (u_n) ?

Même réponse que 1.b.

3. a. Montrer, par récurrence, que pour tout entier naturel $n, 1 \le u_n \le 2$.

Soit la propriété $P_n: 1 \leq u_n \leq 2$

 \circ Initialisation:

Avec n=0: $u_0=1$ d'après l'énoncé et $1\leq 1\leq 2$ Donc P_0 est vraie et la propriété est initialisée au rang n=0.

∘ <u>Hérédité</u> :

On suppose P_k vraie, on a donc $1 \le u_k \le 2$ (HR).

On essaie de montrer que P_{k+1} est vraie, c'est à dire que : $1 \le u_{k+1} \le 2$.

$$1 \le u_k \le 2 \quad (HR)$$

$$\implies \frac{1}{2} \le \frac{1}{2} u_k \le 1$$

$$\implies 1 \le \frac{3}{2} \le 1 + \frac{1}{2} u_k \le 2$$

$$\implies 1 \le u_{k+1} \le 2$$

Donc P_{k+1} est vraie et la propriété est héréditaire

\circ *Conclusion*:

La propriété est initialisée au rang n=0 et est héréditaire donc, par le principe de récurrence, on a bien pour tout entier naturel $n: 1 \le u_n \le 2$

b. Montrer que la suite (u_n) est croissante.

On étudie le signe de $u_{n+1} - u_n = 1 - \frac{1}{2}u_n$.

$$1 \le u_n \le 2$$

$$\implies -2 \le -u_n \le -1$$

$$\implies -1 \le -\frac{1}{2}u_n \le -\frac{1}{2}$$

$$\implies 0 \le 1 - \frac{1}{2}u_n \le \frac{1}{2}$$

Donc $u_{n+1} - u_n \ge 0$ et la suite (u_n) est croissante.

c. Que peut-on en déduire sur la limite éventuelle de la suite (u_n) ?

La suite (u_n) est croissante et majorée par 2 donc elle est convergente et sa limite est inférieure ou égale à 2.

4. a. Écrire un programme en Python qui calcule le $100^{\text{ième}}$ terme de la suite (u_n) (en utilisant sa définition par récurrence et non pas sa formulation explicite).

```
# sans fonction
n = 100
u = 1
for i in range(n-1):
u = 1 + 0.5*u
print(u)
```

b. Que peut-on conjecturer sur la valeur de ce terme?

La valeur de ce terme est inférieure ou égale à 2, la suite étant croissante et majorée.